
r-MUSIC, A Collaborative Music DJ for Ad Hoc Networks

Ursula Wolz, Michael Massimi, Eric Tarn

Department of Computer Science, The College of New Jersey, Ewing, NJ 08628

wolz@tcnj.edu, massimi2@tcnj.edu, tarn2@tcnj.edu

Abstract

We present r-MUSIC, client-server architecture for

sharing music through a persistent resource in which the

music data is not shared among users, but is streamed

from personal digital music players to a stationary high

fidelity speaker system. The client side of this system is

installed on the personal digital music players. Users’

music selections are transmitted through a wireless

interface to the r-MUSIC server, which mediates a song

title queue. Users call referenda on songs in the queue,

and then vote on the popularity of songs, to mediate if

and when they will be played. Our architecture includes

a vote balancing mechanism that prevents users and

their songs from becoming either too dominant or

isolated. The power of this system is that an ad hoc

group can share music without the need for a formal

mediator. Mediation occurs entirely through

collaboration.

1. Introduction

Portable, on-demand music is rapidly becoming

ubiquitous. An emerging problem is how people can

share that music spontaneously in a public social setting,

akin to the classic High School “sock hop” of the 1950s.

In this scenario there is no disc jockey, nor do individuals

bring a premixed play list. Instead, each participant adds

songs to the dynamic play list in an entirely real-time

spontaneous manner. Our assumption is that the music is

shared publicly (e.g. through high fidelity speakers)

rather than through private individual earphones.

Consequently, this is a fixed resource sharing problem

akin to sharing a network printer. The novelty to our

approach is in how the group decides what music to

allow and in what order.

In this paper we describe an architecture called r-

MUSIC, pronounced “our music” (Resource Mediation

by User-Supported Initiative in Communities), that

supports the creation of a dynamic and equitable security

policy management system for ad hoc networks based on

peer consensus of resource management. Our approach

allows any group of individuals to establish a local

network without a human systems administrator. From

the perspective of the music application, this eliminates

the need for a DJ. r-MUSIC dynamically assigns

resource access rights (e.g. to the audio speakers), and

through peer mediation (voting) allows the participants to

determine who gets to use the resources and how often.

Our architecture supports secure music sharing.

Rather than “give” a peer a song, groups only “share” the

music within the spontaneous social setting. Once a piece

of music is played, it continues to reside only on the

electronic play list from which it originated.

2. Background and Related Work

Before describing the architecture of r-MUSIC we

provide the social setting in which it would be used,

articulate our assumptions, and contrast our approach

with related work.

2.1. The 21st Century Sock Hop

Imagine a group of friends, all of whom have a

personal digital music device. They meet at a venue

where a high-quality sound system is connected to an r-

MUSIC server. This server holds no music, but like a

web server merely queues a play list for the fixed

resource, namely the sound system.

Each friend brings his or her own personal device that

includes r-MUSIC client software. Upon entering the

room, registration software in the personal device is

activated by the person so that the server will recognize

the device. The server automatically assigns access

privileges to each device, starting with a neutral

assessment of the person’s status.

Status becomes important later to maintain a socially
balanced group. High status implies trust within the ad
hoc network, and those with high status have more
influence on the group decision-making power (e.g.
whose songs are played when). Low status diminishes
the users' influence on the group. This reflects the natural

Proceedings of the Fourth International Conference on Web Delivering of Music (WEDELMUSIC’04)
0-7695-2157-6/04 $ 20.00 IEEE

Authorized licensed use limited to: Michael Massimi. Downloaded on September 16,2022 at 19:47:23 UTC from IEEE Xplore. Restrictions apply.

dynamics of an informal party in which one-person-one-
vote rarely applies to the mediation of dominant,

submissive and aberrant behavior.
The members of the group post songs to the r-Music

server through the interface on their personal devices.

Each user’s personal device displays the public list. Any

member can also stage a referendum on the popularity of

a song, thus asking the group to adjudicate how soon or

even whether a particular piece of music should be

played. They can ask to have their own song considered,

or one of another member. Members can also remove

songs they have posted because of peer pressure from

referenda.

When a song comes to the head of the queue, it is

streamed from the client’s device, and funneled through

the server in real time. Thus the material is never

transferred to a persistent medium and maintains

copyright protection.

This simple scenario can be elaborated. For example,

a professional DJ could sell her services for a more

formal party and provide specialized digital music

players with a well-organized index of songs for

particular kinds of events (teen parties, bar mitzvahs,

weddings).

The immediately obvious drawback of this technology

is how the queue is managed. As will be elaborated upon

in section 3, a linear first in, first out, un-weighted queue

cannot account for unbalanced resource demand. For

example, an individual or small group with dexterous

fingers can dominate the play list. Without the ability to

call referenda, unacceptable music cannot be forced off

the list by group consensus. In fixed networks, a human

system administrator adjudicates. In ad hoc networks

such as the one described here, an automatic method of

creating balance in resource access is required. Section 3

describes in detail how we address this problem.

2.2 Assumptions

Our work makes a number of assumptions that should

be stated at the onset. These have to do with social and

communicative dynamics of small group behavior.

Regardless of whether these assumptions can be proven

correct, in sum, they capture the notion of listener as

active rather than passive participant in a musical

experience.

First, we assume that despite the awesome potential of

private listening, in some social settings listeners will

continue to want to share the experience of listening to a

particular recorded piece. Furthermore they will want to

hear the music through high-fidelity audio equipment

rather than through headphones.

Second, we assume that there are many ad hoc social

settings such as private parties where a group comes

together to contribute music. In the 1950s and 1960s

individuals brought records and stacked them. Casual

communication within the group determined preference

as well as the ordering of the pieces. In earlier times a

musicale would provide entertainment in which the

participants shared their music by performing it, and the

jazz club still captures the flavor of such spontaneity. In

the 70s and 80s, such complete spontaneity was replaced

by the advent of the “party tape”, which more recently

has become “burning a CD”, and most recently “creating

a play list.” In developing the r-MUSIC technology for

more mundane ad hoc network applications, we saw its

potential to bring back the days of truly spontaneously

shared music. Clearly partygoers will communicate face-

to-face, editorializing on the proposed play list. Our

technology simply affords them the requisite mechanisms

for easily sharing their digital music.

Our third assumption is that there is indeed a desire

for individual expression within any group. We assume

that people want to take ownership of the entertainment

in a social setting. Canned play lists, automatic disc

jockeys and other technologies that make listeners

passive do not exploit intrinsic creativity in all

individuals. If people in a group can have real control of

a dynamic play list, then they can express their creativity

in a manner that brings satisfaction to the whole group.

Granted, some will choose not to contribute to the play

list. At the extreme, a participant can simply listen to

what is played, but most of us are critics too, and the

ability to vote on whether and when a song is played

should appeal to even the most passive party participant.

2.3. Related Work

Our work extends current work on ad hoc network

resource allocation [2]. Current methods of resource

allocation have many drawbacks. A system

administrator is needed to establish different user groups,

each with distinct access rights and priority to resources,

and forces all users to be categorized into an unchanging

group. A queue is generally used to determine access

priority to a resource. Time and the number of resources

are limiting factors; they can result in less-than-optimal

arrangements of allocations. There also remain

ambiguities in specifying how arrangements should be

made amongst parties.

Zhao and Karamcheti have previously addressed the

issue of trading resource usage amongst two or more

entities. They express a desire to create “sharing

agreements,” which act as policies. These specify the

obligations, privileges, and execution constraints of each

of the involved stakeholders. Further, they stress that

“agreements must be enforced in the presence of

heterogeneous resource types and dynamically changing

Proceedings of the Fourth International Conference on Web Delivering of Music (WEDELMUSIC’04)
0-7695-2157-6/04 $ 20.00 IEEE

Authorized licensed use limited to: Michael Massimi. Downloaded on September 16,2022 at 19:47:23 UTC from IEEE Xplore. Restrictions apply.

user set and resource availability” [3]. Our system

contributes a method for handling these dynamic user

sets and resource availability; it enables this problem to

be addressed on the fly by the stakeholders.

In the r-MUSIC system, users want to minimize the

time spent formally establishing rules of conduct. Storey,

Blair, and Friday term these situations as “active

environments.” They foresee a future where the

promulgation of wirelessly networked devices reaches a

threshold where strict systems come into play to regulate

their communication. They believe that “[t]he potential

explosion in numbers of devices will require careful

consideration of how interaction between them is to take

place, such that these devices may interact to achieve a

common task” [5]. We agree with this statement, but

instead of considering computerized items, we examine

human behavior. We attempt to, through reflection on

test results, create a robust protocol that can formalize

abstract notions that “human computers” will generate in

sharing situations.

Dannenberg and Hibbard discuss arbitration of

resources amongst policies in a “commerce model”

where all users have their own personal computers [4].

They describe a Banker and Butler who are responsible

for monitoring resources and serving them to requesting

parties. They briefly mention that “[f]or human

engineering reasons, the user should be able to create

policies that constrain sharing” of their own machine

resources. What if the user does not own the machine?

How are policies forged in these cases? r-MUSIC

addresses this problem.

Revocation of resource rights is another issue that the

Butler system is designed to address. It identifies misuse

and takes one of three actions. One possible action is to

warn the user that the resources are being withdrawn so

that they may make preparations to leave. The second

possibility is to cause a “deportation” of their process,

wherein the process is transferred, uninterrupted, back to

the machine that the user owns. In the r-MUSIC scenario,

the process (e.g. the song) would not be deported, but

instead suspended – it would resume its processing after

all other requests have been filled. The final action is

abortion, which is a last resort. [9]

Ahamad, Ammar, and Cheung developed the concept

of “multidimensional voting” through the use of “k-

dimensional vectors of nonnegative integers and each

dimension is independent of the others.” Their algorithm

approaches the problem of quorum assignments through

the use of a mathematical voting model. They prove that

new voting models can be used to solve problems that

traditional ones do not [1]. r-MUSIC is crafted in the

same spirit.

Summers et al. [8] describe the idea of a “Resource-

sharing Machine” that is an extension of the PC-DOS

operating system. The concern for networked resource

sharing was intact in 1985, when the article was

published, as it is now. The only changes are newer

software and hardware with a spontaneous network. In

this article, there is also a discussion of queues, locking

of resources, and other tools involved with resource

sharing and allocation [6]. These methods are to be

improved upon by r-MUSIC.

Damiani et al. took a reputation-based approach for

choosing reliable resources in peer-to-peer networks by

proposing a “self-regulating system where the P2P

network is used to implement a robust reputation

mechanism” [3]. The peer-to-peer management system

for wearable mobile devices constructs a system of

decentralized resource control where access to shared

resources is not determined by a system administrator

[9]. Davison and Graefe “propose a new framework for

[dynamic] resource allocation based on concepts from

microeconomics” where “a resource broker … realizes a

profit by ‘selling’ resources to competing operators using

a performance-based ‘currency.’” [5] Our work furthers

these efforts by providing a solid mathematical

foundation that describes human interaction in a self-

governing environment.

The benefits of such systems are significant: the

overhead of a human system administrator is eliminated

once the system is in place, resource reliability is

increased, users are able to participate in the allocation of

resources (leading to increased user satisfaction), and

resources are better utilized through “profit

maximization” [9].

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Figure 1: r-MUSIC Client Interface

3. The r-MUSIC System

The r-MUSIC system is based on a server and a client

architecture and their interaction. Key to the architecture

is a user-status-balancing algorithm that prevents

resource lockout, but more importantly, significantly

diminishes the ability of any individual or sub-group to

obtain such dominance as to create “scapegoats” in the

group. This section describes the architecture in detail.

Proceedings of the Fourth International Conference on Web Delivering of Music (WEDELMUSIC’04)
0-7695-2157-6/04 $ 20.00 IEEE

Authorized licensed use limited to: Michael Massimi. Downloaded on September 16,2022 at 19:47:23 UTC from IEEE Xplore. Restrictions apply.

Section 4 reports on the status of the implementation and

test results.

3.1 The Client Architecture

The r-Music client is an interface between the r-Music

server and the user’s digital music player that stores,

organizes and selects songs. The client is responsible for

registering with the server and receiving a client id upon

entry into the ad hoc network. The client also explicitly

“checks out” upon leaving the ad hoc network, or

implicitly “checks out” when it goes ‘out of range” of the

server. The client receives and displays the current public

play list from the server. Figure 1 shows a prototype

interface that is comfortably legible on a standard

handheld screen. The user switches windows to move

between this screen and the normal digital music

interface.

Through the r-Music client, the user can post songs

and delete songs he or she previously posted. The user

can also post a referendum on a song on the public play

list (regardless of the source of the song).

A referendum generates a warning to the other clients

in the network (e.g. a sound or flashing icon) and users

have a fixed time (e.g. a minute) to vote the song “up” or

“down”. Voter impact on song placement in the queue is

described below.

Finally, the client waits for a request from the server

to begin playing a song. The song is not streamed to the

server, but instead is directly streamed to the audio

equipment. Hence the data for the song is never stored

external to any device other than the personal digital

music device of origin. There is no file copying in our

architecture. When the song streaming is complete, the

client informs the server so that the public play list can

be updated. Consequently, once a song begins to play,

only the client of origin has control of the data streaming.

3.2 The Server Architecture

The r-MUSIC server is responsible for verifying the

veracity of clients, registering them, and maintaining

client status. All clients enter the network with neutral

status (a value of 50%). The server maintains the public

play list and broadcasts the information on the list to

active clients.

The server updates the play list by managing the

queue, including updating song placement after a

referendum, or after the current song is complete. The

server only manages song ids. It never manipulates the

song data file. All songs enter the queue with a neutral

rating (of 50%). This rating is different from the user

rating described previously. As a song progresses in the

queue, its rating is increased by 1 percentage point.

Hence, without any referenda, songs implicitly enter at

the back of the queue.

The server also manages referenda. More than one

referendum may be active at a time (users may lobby for

the placement in the list of more than one song.) The

server posts the referendum to all active clients, and

tallies the “up” or “down” votes. The song rating is

updated based on the votes, taking into account the user

ratings, and the queue is revised as a result.

Finally, the server also manages the status ratings of

the clients. This occurs at the close of a referendum and

when a new song comes to the front of the queue.

3.3 Updating Client and Song Rating

When a user decides to request a song, the request is sent

to the r-MUSIC server. Once received, the server will

insert the requested song into the play list at the

predetermined median ranking (50). At this point, the

song appears on the public play list.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Figure 2: Impact of Balancing
on Rating Change

Once a song appears on the public play list, any user

can initiate a referendum by choosing to boost or lower

this song’s rating. When this occurs, notification of a

new referendum is sent to all users. Users may choose to

participate in a referendum or simply ignore it. If a user

chooses to participate, he or she will be able to choose

whether they agree or disagree with the proposed change

in rating.

 For instance, Mike is particularly enthused about

hearing the song “Norwegian Wood.” He chooses to

boost its rating. When this happens, Ursula (along with

every other client) receives a notification informing her

that Mike wants to hear “Norwegian Wood” sooner. She

is presented with two options – agree, or disagree. If she

agrees, her user rating will influence the calculation of

the new song’s rating in a positive way. As an additional

Proceedings of the Fourth International Conference on Web Delivering of Music (WEDELMUSIC’04)
0-7695-2157-6/04 $ 20.00 IEEE

Authorized licensed use limited to: Michael Massimi. Downloaded on September 16,2022 at 19:47:23 UTC from IEEE Xplore. Restrictions apply.

reward for choosing a song in “good taste,” Mike’s rating

would increase a small amount as well. If she disagrees,

her rating will have a negative effect on the song rating,

and Mike’s user rating will decrease slightly. She may

choose to ignore the referendum completely and cast no

vote.

At the end of a referendum, the votes determine the

new rating of the song in the queue. The calculations,

listed below, rely largely upon two factors – the direction

of the vote (positive or negative), and the rating of the

user casting this vote. This mathematically captures the

idea that if someone has a high rating, they have a good

sense of musical taste, and therefore will make a better

decision about a particular song. Likewise, if someone

has poor taste in songs (indicated by a low rating), they

will have a smaller effect on how the play list can change

during referenda.

With its new rating determined, the targeted song will

move up or down on the play list. This ultimately means

that the songs people like will be played sooner than the

songs that are either neutral or disliked.

3.3 Balancing Impact

It can be shown mathematically that a linear voting

system without bounds is quickly overwhelmed. This is

corroborated by our results as described in section 4. We

use an algorithm that changes ratings based on a number

of adjustments made over time. Each of these

adjustments pushes the target user or song higher or

lower on the scale of credibility but in a manner that

balances all ratings near a median value rather than

sending some entities off the scale in either direction. We

describe the formulae in terms of user ratings, but the

same approach applies to song rating.

When a user joins the system for the first time, they

are assigned a rating that is equal to the median value.

To prevent excessively high or low rating values, we

impose artificial limits on the high and low ends of the

continuum. For testing purposes we chose the range 1-

100 with a midpoint of 50.

The source rating is the rating value of the user

wishing to change another user’s rating. The target

rating is the impacted user’s rating before applying the

change. The impact ratio was created to accommodate

the fact that the relative rating of two users should come

into play. This represents an extra boost, for instance, if

a particularly credible user issues a lesser-ranked user a

vote of confidence. The change curve was determined

by taking the integral of a modified bell curve. This was

necessary to avoid obtaining certain values that would

result in a divide by zero. Our formulae for determining

the change of a user’s rating in a social resource-sharing

network are:

ICTnew

T

S
I

RTM

R
C

2

where T is the target rating, I is the impact, C is the

change, S is the source rating, R is the maximum change

permitted for a single vote, and M is the median of

values. Through experimentation we have determined

that R must be inversely related to the size of the group.

At present we determine R by hand. Further

experimentation should provide sufficient data for curve

fitting and a resulting fixed formula. As can be seen from

the graph, all voting tends to cluster user rank toward the

median value. As rank goes to the fringe, it becomes

more difficult for the group to either vote someone “up”

or “down”.

4. Implementation and Testing

Implementation of the complete r-MUSIC

client/server software requires a combination of off-the-

shelf technology and specialized code. Our focus to-date

has been to develop prototype software for testing

theoretical outcomes of the specialized code, especially

the veracity of the balancing formula on dynamic

systems. We have implemented a version of the client-

server architecture that allows us to run batch jobs based

on simulations of predicted user behavior. We are poised

to conduct user tests on a second system that allows us to

do rapid prototyping and conduct principled usability

studies.

4.1 Integration with Off-the-Shelf Technology

The hardware needed to make this system a reality is

readily available in the market today. We are in the

process of procuring and constructing the components

described here while we have implemented and tested

prototypes in Java on Linux platforms. Our environment

consists of two major pieces – the r-MUSIC server and r-

MUSIC clients.

The server is a desktop or laptop computer equipped

with IEEE 802.11b wireless access. Further, the server

also includes a database system (such as MySQL) that

serves as a storage area for song ids, requests, history

logs, and the play list. Finally, the manager runs r-

Proceedings of the Fourth International Conference on Web Delivering of Music (WEDELMUSIC’04)
0-7695-2157-6/04 $ 20.00 IEEE

Authorized licensed use limited to: Michael Massimi. Downloaded on September 16,2022 at 19:47:23 UTC from IEEE Xplore. Restrictions apply.

MUSIC software that performs period checks and

calculations on the contents of the database.

r-MUSIC clients are handheld devices. We have

selected the Sharp Zaurus, running Linux. These clients

have any number of digital music files preloaded onto

their memory in a pre-determined path in the file system.

Each device is additionally equipped with wireless

802.11b access as well, using a local access point. The

clients then choose to run specific client software that

registers the device with the manager. ID3 song

information residing in the predetermined path is read

into memory and passed to the server, where the song

listings for each user are stored. Our Java-based user

interface software is responsible for client-server

communication as well as human-computer

communication.

One concern we have is the rate at which streaming of

music data can occur through our wireless interface. We

anticipate that if the rate degrades song quality then state-

of-the-art buffering can ameliorate the problem.

Alternatively, entirely for testing purposes in the short

term, we can store song data on the server and only store

song ids on the client side, preserving our goal of

containing song data entirely on a single persistent

medium.

4.2 Simulating Predicted Behavior

We have implemented and tested a server solution that

can execute batch jobs of user scenarios. In such

scenarios, n users can be specified who behave in a

specified manner during a “voting round.” A round is

defined as a time unit in which some fixed or random

subset of n, post s songs, vote on r referenda, and another

subset of fixed or random users v+, vote for, and v- vote

against each referendum. Using this testing software we

can show the power of our balancing formula.

In a normal system, the amount of change with each

vote is a constant number, usually 1. By incorporating a

formula that alters the amount of change depending on

the rating of the target user, we can vary the size of the

change on each vote. To compare the number of votes

necessary to move a user from a midpoint (50) to an

extreme (100), we calculate the area under the curve.

The area under the curve for a straight line at 1 is 50.

The area under the curve for a bell-shaped line from 50

to 100 is approximately 180. The straight line and bell-

curve intersect at the point where the change is equal to

one. It is beyond this point that the bell-curve demands

more votes than the straight line in order to achieve a

rating of 100, due to the diminishing size of the changes

in rating.

4.3 Results of Extreme Behavior

We present results of extreme behavior because it

demonstrates the upper bounds, or maximum rate at

which a user can become dominant or isolated. The intent

of our balancing formula is to slow the rate at which this

occurs. Dominance is defined as the user reaching a
rating of 100. Isolation is defined as the user reaching a
rating of 1. Three cases illustrate the phenomenon of

dominance and isolation with 5, 10 and 20 users. All
users start off with a rating of 50 and cast one vote every
round of voting for the same target user. The default step
is assigned by hand relative to the number of users. For
each case there are two experiments: (1) all users vote
positively to push one user to dominance, and (2) all
users vote negatively to push one user to isolation. Each
experiment was executed three different ways:

1. Without the balancing formula (e.g. linear

voting).

2. With the balancing formula applied sequentially

after each vote during a round.

3. With the balancing formula applied at the end of

each round based on the aggregate result of

overall voting.

Table 1 shows the results of the three experiments to

achieve dominance and the three experiments to achieve

isolation. In all experiments the sequential application of

the formula significantly reduces the impact of voting,

even with 20 users. Although aggregate voting is more

efficient, and intuitively appears to be fairer than

sequential voting, it doesn’t provide the same degree of

protection from dominance or isolation that occurs with

the sequential application of voting. Our results also

show how isolation and dominance perform in a

predictably similar fashion. It should take the same

amount of time to isolate some one as to let some one

dominate.

Table 1: Results of Experimentation

Number of Rounds to Achieve Dominance

Number
Of Users

Default
Step

Without
Formula

Formula
Applied
Sequential

Formula
Applied as
Aggregate

5 5 2 12 5

10 3 2 16 5

20 2 2 17 3

Number of Rounds to Achieve Isolation

Number
Of Users

Default
Step

Without
Formula

Formula
Applied
Sequential

Formula
Applied as
Aggregate

Proceedings of the Fourth International Conference on Web Delivering of Music (WEDELMUSIC’04)
0-7695-2157-6/04 $ 20.00 IEEE

Authorized licensed use limited to: Michael Massimi. Downloaded on September 16,2022 at 19:47:23 UTC from IEEE Xplore. Restrictions apply.

5 5 2 12 5

10 3 2 16 5

20 2 2 17 3

5. Summary and Future Work

The r-MUSIC architecture presented here has the

potential to provide a rich environment in which to share

music without violating copyright laws. The application

of even a simple balancing formula can provide an order

of magnitude improvement on preventing dominance or

isolation.

Our next step with the simulation is to experiment

with returning users from dominance and isolation to

neutral status. A limitation of our current simulation is

that we cannot adequately represent the predilections and

personal preferences of human users. Preliminary

experiments to model “typical users” using probabilities

has been problematic. Further simulation is also required

to develop a mathematical theory of the relationship

between numbers of users and default step.

We have developed usability protocols and are poised

to do experiments with human volunteers to test extreme

behavior. For example we will target a “scapegoat” or a

“charismatic leader” who some, but not all, users will

vote for or against regularly, but not as systematically as

our batch simulator. We also plan to conduct experiments

where subgroups try to return status to isolated

individuals. Finally we need to set our system loose in

real situations and develop surveys and focus group

protocols that identify strengths and weaknesses in our

approach. We look forward to this final step, and

anticipate that real users, in real social settings will find

our software an exciting new entertainment medium.

6. References

[1] Ahamad, M, M. H. Ammar, and S. Y. Cheung.

Multidimensional Voting. ACM Transactions on Computer

Systems, Vol 9, No. 4, November 1991.

[2.] Cosell, B.P, P.R. Johnson, J.H. Malman, R.E. Schantz, J.

Sussman, R.H. Thomas, and D.C.Walden, An Operational

System for Computer Resource Sharing. Proceedings of the

fifth ACM symposium on Operating Systems principles, Austin,

TX, USA. November 19-21, 1975.

[3] Damiani, E, S. D. C. di Vimercati, S. Paraboschi, P.

Samarati, and F. Violante. A Reputation-Based Approach for

Choosing Reliable Resources in Peer-to-Peer Networks.

CCS’02, Washington, DC, USA. November 18-22, 2002.

[4] Dannenberg R. B. and P. G. Hibbard. A Butler Process for

Resource Sharing on Spice Machines. ACM Transactions on

Office Information Systems, Vol. 3, No. 3, July 1985.

[5] Davison D. and G. Graefe. Dynamic Resource Brokering for

Multi-User Query Execution. SIGMOD’95, San Jose, CA, USA.

1995.

[6] Massimi, M. and U. Wolz. Peer-to-Peer Policy Management

System for Wearable Mobile Devices. Proceedings of the

Seventh IEEE International Symposium on Wearable Computers

(ISWC’03). White Plains, NY, October 2003

[7] Storey, M. G. Blair, and A. Friday. MARE: Resource

Discovery and Configuration in Ad Hoc Networks. Mobile

Networks and Applications, 7, 2002.

[8] Summers, R. C, M. Ebrahimi, J. M. Marberg, and U. Zernik.

Design and Implementation of a Resource Sharing System as an

Extension to a Personal Computer Operating System.

Proceedings of the 1985 ACM SIGSMALL symposium on Small

systems, Danvers, MA, USA. 1985.

[9] Zhao T. and V. Karamcheti. Expressing and Enforcing

Distributed Resource Sharing Agreements. Proceedings of the

IEEE/ACM SC2000 Conference. Dallas, TX, USA. November 4-

10, 2000.

Proceedings of the Fourth International Conference on Web Delivering of Music (WEDELMUSIC’04)
0-7695-2157-6/04 $ 20.00 IEEE

Authorized licensed use limited to: Michael Massimi. Downloaded on September 16,2022 at 19:47:23 UTC from IEEE Xplore. Restrictions apply.

	footer1:

